Problem 2.22

Find the potential inside and outside a uniformly charged solid sphere whose radius is R and whose total charge is q. Use infinity as your reference point. Compute the gradient of V in each region, and check that it yields the correct field. Sketch $V(r)$.

Solution

An electrostatic field must satisfy $\nabla \times \mathbf{E}=\mathbf{0}$, which implies the existence of a potential function $-V$ that satisfies

$$
\mathbf{E}=\nabla(-V)=-\nabla V .
$$

The minus sign is arbitrary mathematically, but physically it indicates that a positive charge in an electric field moves from high-potential regions to low-potential regions (and vice-versa for a negative charge). To solve for V, integrate both sides along a path between two points in space with position vectors, \mathbf{a} and \mathbf{b}, and use the fundamental theorem for gradients.

$$
\begin{aligned}
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}_{0} & =-\int_{\mathbf{a}}^{\mathbf{b}} \nabla V \cdot d \mathbf{l}_{0} \\
& =-[V(\mathbf{b})-V(\mathbf{a})] \\
& =V(\mathbf{a})-V(\mathbf{b})
\end{aligned}
$$

In this context a is the position vector for the reference point (taken to be infinity ∞ here), and \mathbf{b} is the position vector \mathbf{r} for the point we're interested in knowing the electric potential.

$$
\int_{\infty}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}_{0}=V(\infty)-V(\mathbf{r})
$$

The potential at the reference point is taken to be zero: $V(\infty)=0$.

$$
\int_{\infty}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}_{0}=-V(\mathbf{r})
$$

Therefore, the potential at $\mathbf{r}=\langle x, y, z\rangle$ is

$$
V(\mathbf{r})=\int_{\mathbf{r}}^{\infty} \mathbf{E} \cdot d \mathbf{l}_{0}
$$

According to Problem 2.12, the electric field around a uniformly charged solid ball is

$$
\mathbf{E}=\left\{\begin{array}{ll}
\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{3}} \hat{\mathbf{r}} & \text { if } r<R \\
\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} & \text { if } r>R
\end{array} .\right.
$$

Since the electric field is spherically symmetric, the path taken from \mathbf{r} to ∞ is a radial one and parameterized by r_{0}, where $r \leq r_{0}<\infty$.

$$
V(r)=\int_{r}^{\infty} \mathbf{E}\left(r_{0}\right) \cdot d \mathbf{r}_{0}
$$

Evaluate the dot product, substitute the formula for the electric field, evaluate the integrals, and simplify the result.

$$
\begin{aligned}
& V(r)=\int_{r}^{\infty}\left[E\left(r_{0}\right) \hat{\mathbf{r}}_{0}\right] \cdot\left(\hat{\mathbf{r}}_{0} d r_{0}\right) \\
& =\int_{r}^{\infty} E\left(r_{0}\right) d r_{0} \\
& = \begin{cases}\int_{r}^{R} \frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{3}} r_{0} d r_{0}+\int_{R}^{\infty} \frac{1}{4 \pi \epsilon_{0}} \frac{q}{r_{0}^{2}} d r_{0} & \text { if } r<R \\
\int_{r}^{\infty} \frac{1}{4 \pi \epsilon_{0}} \frac{q}{r_{0}^{2}} d r_{0} & \text { if } r>R\end{cases} \\
& = \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{3}}\left(\int_{r}^{R} r_{0} d r_{0}\right)+\frac{q}{4 \pi \epsilon_{0}}\left(\int_{R}^{\infty} \frac{d r_{0}}{r_{0}^{2}}\right) & \text { if } r<R \\
\frac{q}{4 \pi \epsilon_{0}}\left(\int_{r}^{\infty} \frac{d r_{0}}{r_{0}^{2}}\right) & \text { if } r>R\end{cases} \\
& = \begin{cases}\left.\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{3}}\left(\frac{r_{0}^{2}}{2}\right)\right|_{r} ^{R}+\left.\frac{q}{4 \pi \epsilon_{0}}\left(-\frac{1}{r_{0}}\right)\right|_{R} ^{\infty} & \text { if } r<R \\
\left.\frac{q}{4 \pi \epsilon_{0}}\left(-\frac{1}{r_{0}}\right)\right|_{r} ^{\infty} & \text { if } r>R\end{cases} \\
& = \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{3}}\left(\frac{R^{2}}{2}-\frac{r^{2}}{2}\right)+\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{R}\right) & \text { if } r<R \\
\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{r}\right) & \text { if } r>R\end{cases} \\
& = \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{q}{2 R}\left[3-\left(\frac{r}{R}\right)^{2}\right] & \text { if } r<R \\
\frac{q}{4 \pi \epsilon_{0} r} & \text { if } r>R\end{cases}
\end{aligned}
$$

In spherical coordinates

$$
\nabla V=\frac{\partial V}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \overbrace{\frac{\partial V}{\partial \theta}}^{=0} \hat{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \overbrace{\frac{\partial V}{\partial \phi}}^{=0} \hat{\boldsymbol{\phi}},
$$

so

$$
\begin{aligned}
\nabla V & = \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{q}{2 R} \frac{d}{d r}\left[3-\left(\frac{r}{R}\right)^{2}\right] \hat{\mathbf{r}} & \text { if } r<R \\
\frac{d}{d r}\left(\frac{q}{4 \pi \epsilon_{0} r}\right) \hat{\mathbf{r}} & \text { if } r>R\end{cases} \\
& = \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{q}{2 R}\left[-\left(\frac{2 r}{R^{2}}\right)\right] \hat{\mathbf{r}} & \text { if } r<R \\
\left(-\frac{q}{4 \pi \epsilon_{0} r^{2}}\right) \hat{\mathbf{r}} & \text { if } r>R\end{cases} \\
& = \begin{cases}-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{3}} r \hat{\mathbf{r}} & \text { if } r<R \\
-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} & \text { if } r>R\end{cases} \\
& =-\mathbf{E}
\end{aligned}
$$

as expected. Below is a plot of $V(r)$ versus r / R.

